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ABSTRACT
Language model pre-training has spurred a great deal of attention
for tasks involving natural language understanding, and has been
successfully applied to many downstream tasks with impressive
results. Within information retrieval, many of these solutions are
too costly to stand on their own, requiring multi-stage ranking
architectures. Recent work has begun to consider how to “backport”
salient aspects of these computationally expensive models to
previous stages of the retrieval pipeline. One such instance is
DeepCT, which uses BERT to re-weight term importance in a given
context at the passage level. This process, which is computed offline,
results in an augmented inverted index with re-weighted term
frequency values. In this work, we conduct an investigation of query
processing efficiency over DeepCT indexes. Using a number of
candidate generation algorithms, we reveal how term re-weighting
can impact query processing latency, and explore how DeepCT can
be used as a static index pruning technique to accelerate query
processing without harming search effectiveness.
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1 INTRODUCTION
Neural models for document re-ranking have benefited from a
surge in performance recently due to the success of unsupervised
pre-training on large text corpora, resulting in models such as
ELMo and BERT [7, 21]. These models are the foundation for many
recent state-of-the-art results on natural language tasks. As such,
there is growing interest in utilizing pre-trained models to enhance
existing components of the retrieval pipeline beyond document re-
ranking [5, 20, 26]. However, approaches that augment an inverted
index to improve search effectiveness are yet to be scrutinized with
respect to search efficiency beyond some simple measures such as
inference throughput [20] or mean query latency [19].
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In this work, we conduct a detailed comparison of various
inverted indexes that can be obtained via DeepCT-Index [5], a
recently proposed contextual term re-weighting framework. After
confirming the effectiveness of DeepCT-Index, we show that it does
not add latency to the candidate generation stage of the search
system, supporting the conjecture made by Dai and Callan [5].
Moreover, we show thatDeepCT-Index can actually improve search
efficiency via static index pruning, making it promising for use in
production information retrieval systems.

2 BACKGROUND
2.1 Deep Contextualized TermWeighting
Many retrievalmodels use term frequency (tf ) to estimate document-
specific term weights. However, term frequency is independent of
the specific linguistic context in which the term occurs, which is
crucial to understanding a term’s importance. Motivated by this ob-
servation, Dai and Callan [5] proposed a novel approach to estimate
document-specific term weights using a deep contextualized term
weighting framework (DeepCT). First, it generates contextualized
term embeddings using BERT [7]. These term embeddings embody
not only the token itself, but are also conditioned on its surrounding
text. Next, DeepCT maps these embeddings into context-specific
term weights. The predicted term weights are used to re-weight the
original tf field in the inverted index. In some cases,DeepCT assigns
term weights ≤ 0, which can be viewed as a form of index pruning.
DeepCT-Index was shown to significantly outperform classic tf
retrieval methods in the context of both passage ranking [5] and
web search [6]. Our experiments focus on how these re-weighted
tf values impact search efficiency.

2.2 Efficient Query Processing
Large-scale search engines must effectively balance efficiency and
effectiveness to provide a good user experience. Hence, these
systems are often implemented as multi-stage cascades, where a set
of increasingly sophisticated ranking models re-rank a decreasing
number of documents, arriving at a final ranked results list [24].
The first stage, candidate generation, aims to rapidly retrieve a large
set of documents that are likely to be relevant to the given query.
Our work focuses on this stage of the retrieval pipeline.

Index Traversal and Dynamic Pruning. While various index
organizations have been proposed, the most common technique
stores a postings list for each term in the index, comprised of a
list of document identifiers and corresponding term frequencies in
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ascending order of the document identifier. During Document-at-
a-Time query processing, the postings lists that correspond to the
query terms are accessed and traversed at once, such that a single
document is evaluated at a time. A min-heap is used to store the
top-k results that have been observed, and returns these results
after processing terminates.

To increase the efficiency of index traversal, a number of dynamic
pruning algorithms have been proposed. Assuming the scoring
model is additive, these algorithms pre-compute and store the
highest possible score of each term. During query processing, these
upper-bound values are then used to determinewhether a document
could achieve a score that exceeds the current heap threshold — if
so, the document will be scored. Otherwise, the document can be
skipped, resulting in faster query processing. BothMaxScore [23],
and WAND [2] accelerate query processing in this manner. Further
enhancements can be achieved by storing a number of per-block
upper-bound scores, allowing tighter estimations on the maximum
possible score for each document. The state-of-the-art BMW [8]
and VBMW [14] algorithms follow this approach. We refer the
interested reader to the survey of Tonellotto et al. [22] and recent
empirical comparisons [4, 16] for more details.

Static Index Pruning. Another way to reduce both latency and
storage costs is to remove documents or postings at index time.
Good candidates for document pruning are those likely to hinder a
search system’s effectiveness via the contribution of noise to the
search results, such as spam documents, for example. A document
prior may be used to remove these documents, reducing the index
size, which has the effect of changing the underlying index statistics
in a fairly course grained manner.

A primitive form of postings removal is the omission of stop
words during indexing. Other term level approaches typically
modify frequency statistics which are used to calculate a score
for a given term and document, where the score is used to derive
various term pruning strategies [3, 9]. Other term based methods
modify the underlying statistics in a way that results in the terms
being re-weighted rather than solely discounted [1].

3 EXPERIMENTS
Datasets and Queries. Our experiments are conducted on the MS
MARCO passage collection, which contains 8.8 million passages
extracted from 3.6 million documents [18]. The query set contains
6,980 natural language questions with associated relevance judg-
ments from the dev set, allowing us to explore both efficiency and
effectiveness. We use both an unstopped and a stopped version of
this query set for our experiments. We build a number of different
indexes across the collection, each using the same end-to-end
tokenization and indexing pipeline to ensure a fair comparison.
Since we are interested in examining how both the term re-
weighting and the static pruning components of DeepCT-Index
impact efficiency, we build four unique indexes: Orig-U represents
the default inverted index containing the original tf values; Orig-P
is the Orig-U index, but static pruning is applied using DeepCT-
Index; DeepCT-U stores re-weighted tf values, but includes the
original tf value where pruning occurs; and DeepCT-P stores re-
weighted tf values, allowing pruning to take place. A pictorial
representation is shown in Figure 1.
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Figure 1: A pictorial example of a single postings list for each of
the indexes, shown as docid/tf pairs. Blue cells represent original tf
values from the corpus, red cells represent re-weighted tf values,
and dashed lines denote cases where DeepCT-Index applied a
weight ≤ 0, resulting in the posting being pruned.

Table 1: Basic statistics for the Unpruned and Pruned representa-
tions of the MS MARCO passage corpus.

Index Documents Terms Postings

Unpruned 8,841,823 1,515,955 265,718,705
Pruned 8,841,796 989,873 128,969,826
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Figure 2: Number of times different term frequencies are observed
across each of the indexes. Note the log-log scale.

Table 1 shows some basic statistics for the indexes. As expected,
the Pruned indexes contain fewer documents, postings, and terms
than their Unpruned counterparts. Figure 2 plots the number
of times each term frequency is observed across each index.
Clearly, the DeepCT indexes contain a much larger range of term
frequencies, with a higher density of larger values. The wave-like
artifact observed for DeepCT indexes results from the term weights
being applied on the raw corpus before stemming, causing the
frequencies of some terms to spike.

Hardware and Software. We use Anserini [25] to generate the
inverted indexes for each of the collections. We then export the
Anserini indexes using the common index file format [13], and load
them into PISA [15]. BM25 was used for ranking, with the optimal
parameters selected as reported by Dai and Callan [5]. Indexes
were compressed in fixed-sized blocks of 128 elements with SIMD-
BP128 [12], which was recently shown to give good time-space
trade-offs during decoding [12, 16]. Experiments are conducted on a
Linux machine with two Intel Xeon Gold 6144 CPUs (3.50GHz) and



Table 2: Effectiveness scores for each index, using both unstopped
and stopped query logs. The ‡ symbol represents significant
differences with respect to Orig-U.

Index Unstopped Stopped

AP Recall MRR AP Recall MRR

Orig-U 0.195 0.860 0.188 0.203 0.873 0.195
DeepCT-U 0.252‡ 0.911‡ 0.244‡ 0.256‡ 0.910‡ 0.249‡

Orig-P 0.203‡ 0.861 0.195‡ 0.215‡ 0.877 0.206‡

DeepCT-P 0.252‡ 0.906‡ 0.244‡ 0.253‡ 0.907‡ 0.245‡

512 GiB of RAM. Experiments which collect timings use a single
processing thread, and take the average of three independent runs.
Our experiments are made available for reproducibility.1

3.1 Effectiveness Evaluation
Our first experiment aims to reproduce the early-stage effectiveness
improvements that are achieved by DeepCT-Index [5]. We retrieve
the top k = 1000 documents for each query, and report the values of
average precision (AP) and recall at depth 1000, and mean reciprocal
rank (MRR) at depth 10. We conduct Bonferroni corrected pairwise
t-tests, and report significance with p < 0.01. Table 2 shows the
results. As expected, we are able to closely replicate the effectiveness
scores suggested by earlier work [5, 19], with minor differences
arising due to the underlying BM25 computation [10]. In comparing
the effectiveness between the four indexes, it is clear that the
majority of the improvements arise due to the term frequency
weighting provided by DeepCT-Index. However, significant gains
in effectiveness for AP and MRR are observed when comparing
Orig-P to Orig-U, suggesting that using DeepCT-Index for static
index pruning alone can improve effectiveness.

3.2 Efficiency Analysis
Our next experiment aims to quantify the efficiency of top-k
retrieval across the four indexes. Along with a typical exhaustive
ranked disjunction (RankedOR), we employ a number of efficient
dynamic pruning algorithms, including MaxScore, WAND, and
BMW with fixed-sized blocks of 40 elements.2 Here, we report
timings from the stopped log only due to space constraints. Figure 3
reports the time taken to retrieve the top 1000 documents in
milliseconds as a ‘Tukey’ boxplot; the boxes bound the 25th to
75th percentiles, whiskers cover data within 1.5× the IQR, and
outliers are plotted as points. For convenience, we also report some
common efficiency metrics in Table 3. Finally, we report the index
size and sequential decoding speed in Table 4.

Effect of Pruning. Figure 3 shows that, irrespective of the value
of k or the query processing algorithm, retrieval over the Pruned
indexes is much more efficient than retrieval over the Unpruned
indexes. This benefit comes from the given retrieval algorithm scor-
ing fewer documents and postings during traversal. Pruning is very
effective in reducing tail latency, with improvements in P99 of up to

1https://github.com/jmmackenzie/term-weighting-efficiency
2We also experimented with VBMW, but noted a very similar efficiency to the fixed-
block BMW, so report only the latter for clarity.
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Figure 3: Query latency in milliseconds for retrieving the top 1000
passages across each index for each query processing algorithm.
Note the log scale on the y-axis.

Table 3:Median latency (P50), 99th percentile latency (P99), and the
mean number of documents scored in thousands (Docs) for retrieval
across all algorithms and indexes for k = 1000.

Algorithm Measure Orig-U DeepCT-U Orig-P DeepCT-P

RankedOR P50 8.8 8.9 5.9 6.3
P99 42.3 48.2 18.9 19.4
Docs 447.9 447.9 241.5 241.5

MaxScore P50 4.1 4.3 2.9 3.0
P99 24.0 25.9 15.9 16.5
Docs 152.6 163.4 99.7 101.5

WAND P50 3.9 4.2 2.9 3.1
P99 24.5 28.1 13.5 13.2
Docs 58.7 75.9 46.9 53.0

BMW P50 3.7 4.0 2.8 3.1
P99 25.6 25.5 13.0 14.0
Docs 27.2 35.3 24.5 29.6

Table 4: Total index size (MiB), compression rate (bits per integer),
and sequential decoding time (nanoseconds per integer) for the
four inverted indexes, broken down by document identifiers (Docs)
and term frequencies (Freqs).

Index Index Size Decoding Time

Total Docs Freqs Docs Freqs

Orig-U 433 11.1 2.4 0.59 0.56
DeepCT-U 534 11.1 5.6 0.59 0.63
Orig-P 240 12.8 2.8 0.80 0.78
DeepCT-P 312 12.8 7.4 0.81 0.87

2.5× for RankedOR, 1.6× for MaxScore, 2.1× for WAND, and 2.0×
for BMW. Interestingly, the dynamic pruning algorithms generally
evaluate fewer documents on the Pruned indexes, indicating that
both static and dynamic pruning approaches may be able to interact
to achieve additive efficiency gains. A similar effect has been noted
in prior work on selective search [11].
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Examining Table 4, we observe that the Pruned indexes are
slower to decode than their Unpruned equivalents. This is because
the SIMD-BP128 compression codec cannot compress blocks with
fewer than 128 values, and reverts to using binary interpolative
coding [17] (BIC) for those blocks. Examining the indexes shows
that 5% of the postings in the Unpruned indexes are compressed
with BIC, compared to 8% in the Pruned indexes. Furthermore,
since the postings lists are shorter in the Pruned indexes, on
average, the instruction throughput is lower, resulting in less
efficient decompression and processing. While we also note a
slight reduction in compression rate for the Pruned indexes, these
reductions are far outweighed by the absolute time and space
improvements achieved from pruning.

Effect of Term Weighting. Indexes which employ DeepCT term
frequencies exhibit slightly slower retrieval than those which use
the default tf values. This trend can be confirmed by comparing
the columns of Table 3, and is most evident for the 99th percentile
latency. Interestingly, this trend occurs even for the exhaustive
RankedOR algorithm, which processes the same volume of doc-
uments and postings regardless of the internal term-frequency
values. To further understand this phenomenon, we refer to Table 4.
Evidently, the DeepCT-Index term frequencies are much harder
to compress, with a 2.3× and 2.6× increase on bits per integer for
Unpruned and Pruned, respectively, due to the increased size and
variance of the tf values in the DeepCT indexes (see Figure 2). As
such, a larger amount of memory must be accessed to decode the
frequencies of the DeepCT-U and DeepCT-P indexes, resulting in
increased decoding time. Thus, an unexpected effect of term re-
weighting is that it can negatively impact the compression of the
postings lists, resulting in slight performance penalties.

3.3 Summary
Based on our analysis, we highlight a number of key observations:

• Effectiveness improvements from DeepCT-Index are mostly
due to the term re-weighting component of the algorithm,
though the static pruning component also contributes to
effectiveness improvements.

• From an efficiency perspective, using DeepCT-Index as a
context-aware static pruning algorithm is very promising.

• Static and dynamic pruning methods may achieve additive
efficiency gains, warranting further exploration.

• Term re-weighting can decrease the compression rate of the
underlying tf data, which results in a slight performance
penalty with respect to the original tf values.

4 CONCLUSION AND FUTUREWORK
With continuing improvements in neural language modeling, it
is important to understand how these frameworks interact with
traditional search systems. In this work, we take a first step to
understanding the efficiency implications that such models have
on the efficacy of candidate generation for multi-stage retrieval
systems. In particular, we explore how term re-weighting and static
pruning from the recently proposed DeepCT-Index impacts latency.
Our findings show that, while re-weighted term frequencies add
slight costs to both storage and decompression, these costs are
easily won back by the static pruning conducted by DeepCT-Index.

In future work, we would like to compare the static pruning
capabilities of DeepCT-Index to other static pruning baselines [9],
and investigate the impact of term pruning and re-weighting for
larger collections such as those used for web search tasks.
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